Acta Cryst. (1966). 20, 626

Structure Cristalline de l'Adipamide

MICHEL HOSPITAL ET JACQUES HOUSTY

Laboratoire de Cristallographie, Faculté des Sciences de Bordeaux, France

(Reçu le 16 juillet 1965)

The crystal structure of adipamide has been determined and refined by three-dimensional X-ray diffraction methods. The crystals are monoclinic with the unit-cell dimensions a = 6,89, b = 5,15, c = 10,67 Å; $\beta = 111^{\circ}$. The space group is $P2_1/c$ with two molecules in the unit-cell. Bond lengths and angles are consistent with the currently accepted value for aliphatic compounds. This structure is held together by non-centrosymmetric hydrogen bonds O · · · HN.

Introduction

L'adipamide $\text{CONH}_2-[\text{CH}_2]_4-\text{CONH}_2$ fait partie de la série des diamides aliphatiques dont nous étudions actuellement les structures cristallines au laboratoire. C'est un terme à nombre de carbone pair de la série qui se place entre le succinamide en C₄ (Davies & Pasternak, 1956) et le subéramide en C₈ (Hospital & Housty, 1966).

Partie expérimentale

Cristallisation

L'adipamide est obtenu par sublimation sous forme d'aiguilles cristallines. La direction d'allongement est [010] dans le système monoclinique. On peut aussi faire cristalliser l'adipamide par refroidissement lent d'une solution aqueuse, sous une forme (plaquettes) peu avantageuse pour les diagrammes de diffraction aux rayons X.

Maille et groupe spatial

Les paramètres sont mesurés par oscillation d'un cristal dans une chambre de Bragg.

$a = 6,89 \pm 0,01$ Å	
$b = 5,15 \pm 0,01$	$\beta = 111^{\circ}$
$c = 10,67 \pm 0,01$	$V = 353 \text{ Å}^3$
Densité calculée:	1,356 g.cm ⁻³
Densité mesurée:	1,360

Les extinctions systématiques observées sur les rétigrammes de De Jong permettent d'attribuer à l'adipamide le groupe spatial $P2_1/c$. Il y a 2 molécules par maille.

Tous les clichés ont été obtenus avec le rayonnement $K\alpha$ du cuivre ($\lambda = 1,540$ Å).

Mesures des intensités

Les intensités des rayons diffractés ont été mesurées dans tout l'espace réciproque sur les rétigrammes de De Jong par comparaison visuelle avec une échelle de taches étalonnées. Le nombre de réflexions observables pour les différents plans réciproques est:

h01	78 taches
h11	145
h2l	123
h3l	57
h4l	55

Les intensités brutes ont été corrigées des facteurs de Lorentz et de polarisation. Pour l'affinement nous avons tenu compte des 458 taches contenues théoriquement dans les rétigrammes alors que nous n'avons pu en mesurer que 352.

Aucune correction d'absorption n'a été effectuée, le cristal ayant une très faible section $(0.15 \times 0.15 \text{ mm})$.

Tous les calculs de séries de Fourier bidimensionnelles ont été obtenus à l'aide du photosommateur optique de Von Eller.

Détermination de la structure

La structure a été résolue par l'étude de la fonction de Patterson.

Projection suivant la direction [010]

La disposition des pics de la projection de la fonction de Patterson suivant la direction [010] permet de prévoir avec précision l'orientation de la molécule sur cette projection. En effet les pics s'alignent sur des droites parallèles à la direction [102] qui doit correspondre à l'allongement de la projection de la molécule sur le plan x0z.

En tenant également compte de la symétrie de la molécule une hypothèse de départ a été établie puis calculée avec un coefficient d'agitation thermique de $B_m = 4$ Å². Le facteur de reliabilité est R = 0,27. La projection de la structure a ensuite été affinée automatiquement par une méthode des moindres carrés écrite pour ordinateur IBM 1620. L'affinement a porté sur les positions atomiques, le coefficient d'échelle et le coefficient B_m d'agitation thermique moyen pour l'ensemble de la molécule. A ce moment le facteur de reliabilité est descendu à R = 0,14.

Projection suivant les directions [010] et [001]

La répartition des pics sur ces deux projections de la fonction de Patterson et les résultats obtenus sur l'autre projection nous ont amenés à envisager une répartition des molécules telle que les groupements amides de deux molécules voisines se déduisent l'un de l'autre par une symétrie autour d'un axe 2_1 .

Cette hypothèse a été confirmée par le calcul. Le facteur de reliabilité était de: R=0,15.

Affinement tridimensionnel

La structure a été affinée automatiquement par une méthode des moindres carrés en prenant comme coordonnées atomiques de départ les valeurs données par l'étude des projections.

L'affinement a porté successivement sur les positions atomiques, le coefficient d'échelle, le coefficient d'agitation thermique isotrope pour chaque atome. A ce stade le facteur de reliabilité était de: 0,184.

Nous avons ensuite placé les atomes d'hydrogène (qui représentent 8% de la densité électronique totale) en tenant compte de la longueur de liaison C-H voisine de 1 Å et des liaisons tétraédriques du carbone. Les atomes d'hydrogène du groupement NH₂ ont été mis à la distance de 1 Å et sur la liaison N···O reliant deux molécules voisines. Chaque atome d'hydrogène a été affecté d'un coefficient d'agitation thermique isotrope B=4 Å², Après quelques cycles d'affinement les positions des atomes d'hydrogène se stabilisent, le facteur de reliabilité est alors de: 0,144.

Pour déterminer la nature et l'emplacement des défauts résiduels existants nous avons fait une fonction différence $(F_o - F_c)$, à l'aide du photosommateur de Von Eller, des différentes projections. Il apparaît alors une nette anisotropie d'agitation de la molécule surtout sur les atomes d'oxygène et d'azote qui sont situés en bout de chaîne. Nous avons terminé l'affinement de cette structure en appliquant à chaque atome de carbone, d'azote et d'oxygène une agitation thermique anisotrope (Bouzon, Hauw, Gaultier & Clastre, 1965).

Le coefficient de reliabilité final pour les 458 taches observables est R=0,092. Il est de: R=0,088 pour les 352 taches observées.

Résultats et discussion

Les paramètres atomiques et les valeurs des b_{ij} des différents atomes sont donnés par les Tableaux 1 et 2. Les Figs. 1 et 2 schématisent la disposition des molécules sur les deux projections principales h0l et 0kl. Les distances interatomiques et les angles de liaison donnés dans le Tableau 3 sont normaux et en accord avec ceux des autres diamides. La longueur de la liaison C(2)-C(3)(1,49 Å) est légèrement plus courte que la longueur de la liaison équivalente dans les autres diamides (1,52 Å)(Hospital & Housty, 1966). Toutefois on peut se demander si cette différence est significative. Pour le groupement amide nous retrouvons les longueurs de liaison du succinamide (Davies & Pasternak, 1956): C=O 1,23 Å et C-N 1,32 Å, et du subéramide (Hospital & Housty, 1966): C=O 1,25 Å et C-N 1,32 Å.

Les longueurs C-H semblent légèrement plus courtes que dans les autres molécules aliphatiques, mais les différences sont probablement peu significatives.

Les angles de valence sont peu éloignés des valeurs de l'angle tétraédrique pour les carbones sp^3 et de 120° pour le carbone sp^2 . Il faut cependant noter la valeur élevée (114°) de l'angle C(1)–C(2)–C(3). Cette constatation est valable pour toutes les molécules connues de diacides (Broadley, Cruickshank, Morrison, Robertson & Shearer, 1959; Housty & Hospital, 1965*a*,*b*, 1966) et de diamides (Ayerst & Duke, 1954; Hospital & Housty, 1966): l'angle formé par les atomes de carbone précédant le groupement carboxylique ou le groupement amide est nettement plus grand que l'angle tétraédrique normal que l'on s'attendait à trouver. De même la valeur des angles H–C–H est supérieure à l'angle

Tableau 1. Coordonnées atomiques finales

	$x/a \sigma(x/a)$	$y/b = \sigma(y/b)$	$z/c \qquad \sigma(z/c)$
C(1)	$0,5831 \pm 0,0010$	$0,0267 \pm 0,0014$	$0,4707 \pm 0,0005$
C(2)	$0,6484 \pm 0,0010$	$-0,2245 \pm 0,0016$	$0,4249 \pm 0,0006$
C(3)	$0,8012 \pm 0,0010$	$-0,1923 \pm 0,0015$	$0,3562 \pm 0,0005$
N	$0,8830 \pm 0,0009$	$-0,4108 \pm 0,0015$	$0,3306 \pm 0,0005$
0	$0,8442 \pm 0,0009$	0,0231 ± 0,0013	0,3244 <u>+</u> 0,0005
H(10)	0,7136	0,0876	0,5433
H(11)	0,5257	0,1045	0,3930
H(20)	0,7076	-0,2882	0,4920
H(21)	0,5345	-0,2724	0,3647
H(40)	0,9530	-0,3120	0,2930
H(41)	0,8620	-0,5848	0,3338

Tableau 2. Valeurs finales des bij

	b_{11}	b22	b33	b12	b23	b13
C(1)	0,0238	0,0433	0,0112	-0,0070	0,0225	0,0169
C(2)	0,0268	0,0421	0,0131	0,0006	0,0236	0,0195
C(3)	0,0298	0,0326	0,0112	0,0180	0,0080	0,0163
N	0,0358	0,0343	0,0149	0,0060	-0,0040	0,0249
0	0,0416	0,0394	0,0189	0,0010	-0,0012	0,0390

Tableau 3. Distances et angles interatomiques

C'(1)-C(1)	1,51 ± 0,02 Å	C'(1) - C(1) - C(2)	109° 30'
C(1) - C(2)	$1,51 \pm 0,01$	C(1) - C(2) - C(3)	114
C(2) - C(3)	$1,49 \pm 0,01$	C(2) - C(3) - N	115 30
C(3) - N	$1,33 \pm 0,01$	C(2) - C(3) - O	121
C(3) -O	$1,23 \pm 0,01$	O - C(3) - N	123
C(1) - H(10)	$1,00 \pm 0.05$	C'(1) - C(1) - H(10)	109 30
C(1) - H(11)	$0,90 \pm 0,05$	C'(1) - C(1) - H(11)	109
C(2) - H(20)	0.80 ± 0.05	C(2) - C(1) - H(10)	103
C(2) - H(21)	$0,90 \pm 0,05$	C(2) - C(1) - H(11)	100
N — H(40)	$0,90 \pm 0,05$	C(1) - C(2) - H(20)	101
N - H(41)	$0,90 \pm 0,05$	C(1) - C(2) - H(21)	101
NO'	$2,94 \pm 0,03$	C(3) - C(2) - H(20)	106
NO''	$2,93 \pm 0,03$	C(3) - C(2) - H(21)	106
		H(10)-C(1)-H(11)	124
		H(20)-C(2)-H(21)	128
		H(41)-N H(41)	134
		NH(40)O'	123
		NH(41)-O''	171

théorique de 109°, comme cela a été déjà noté dans les chaînes des diacides ou des diamides.

Les longueurs des liaisons hydrogène N---O' et N---O' sont respectivement de 2,94 et 2,93 Å en accord avec ce qui est généralement trouvé pour des liaisons de ce type.

Le plan moyen de la chaîne de carbone, calculé par une méthode des moindres carrés, a pour équation:

$$x = 0,1909y + 1,9917z' - 11,4538 = 0$$

Aucun des différents atomes de carbone de cette chaîne n'est situé à une distance supérieure à 0,03 Å de ce plan. Les atomes d'azote et d'oxygène en sont respectivement distants de +0.15 et -0.21 Å.

Le plan du groupement amide NC(3)O a pour équation:

$$x + 0,1619y + 1,8869z' - 10,6954 = 0$$

L'angle dièdre du plan du groupement amide et du plan de la chaîne de carbone est de $+10^{\circ}$, l'arête d'intersection étant confondue avec C(2)-C(3).

L'équation du plan des liaisons hydrogène O'NO'' liant les molécules entre elles est:

$$x = 0,1185y + 1,6274z' - 10,4340 = 0$$
.

Fig. 1. Projection de la structure suivant l'axe O_y .

Fig. 2. Projection de la structure suivant l'axe Ox.

L'angle dièdre du plan du groupement amide et du plan des liaisons hydrogène est de: $-8^{\circ}30'$.

Les deux atomes d'hydrogène H(40) et H(41) sont rigoureusement dans le plan des liaisons hydrogène N-O' et N-O'' mais ne sont pas alignés avec les deux atomes N et O. L'angle N-H(41)-O'' vaut 171°, tandis que l'angle N-H(40)-O' vaut 124°. La distance H(40)-O n'est plus que de 1,95 Å, alors que la distance H(40)---O' vaut (2,34 Å).

Fig. 3. Distances interatomiques et angles de liaison.

Les grandeurs et les cosinus directeurs des axes de l'ellipsoïde d'agitation thermique de chaque atome par rapport au système d'axes rectangulaires x'yz sont donnés au Tableau 4. La Fig.4 représente la projection de l'ellipsoïde d'agitation thermique de chaque atome suivant [010]. La plus forte valeur du coefficient d'agitation thermique de chaque atome correspond à la direction perpendiculaire au plan de la molécule. Les atomes d'azote et d'oxygène situés en bout de chaîne ont une agitation thermique transversale plus prononcée que les atomes de carbone.

Tableau	4.	Amplitudes	s et	orientations	des	ellipsoïdes
		d'agita	itioi	n thermique		

		-	-	
	В	α	β	γ
C(1)	6,9	0,064	0,742	0,666
	1,3	0,322	0,616	-0,718
	4,2	0,944	-0,260	0,199
C(2)	7,3	0,253	0,655	0,711
	1,8	0,245	0,668	-0,702
	4,4	0,928	-0,370	-0,008
C(3)	5,8	0,825	0,481	0,293
	2,8	0,455	-0,875	0,158
	4,0	0,523	0,004	-0,851
N	6,7	0,813	-0,001	0,582
	3,2	0,307	-0,836	-0,454
	4,7	0,470	0,549	-0,690
0	9,0	0,789	-0,009	0,613
	3,4	0,599	-0,200	-0,775
	4,2	0,123	0,981	-0,145

La disposition des molécules dans la maille se présente comme une succession de feuillets parallèles au plan (102) et équidistants de 3,4 Å. Dans les feuillets les molécules sont liées entre elles par des liaisons hydrogène $O \cdots$ HN noncentrosymmétriques. Ce mode de liaison des groupements amide par des ponts hydrogène autour d'un axe 2_1 se trouve également dans l'ar-

Fig.4. Projection des ellipsoïdes d'agitation thermique sur le plan x0z.

STRUCTURE CRISTALLINE DE L'ADIPAMIDE

Tableau 5. Facteurs de structure observés et calculés

h k l	F _o F _c	h k I Fo	Fc	h k l	F _o F _c	h k l	F _o I	Fc h	k /	Fo	Fc
00 00 07 00 00 0% 00 00 0% 00 00 0% 00 00 0% 00 00 10 00 00 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o1 o1 -10 2.7 o1 o1 -09 1.7 o1 o1 -08 2.9 o1 o1 -07 3.0 o1 o1 -07 3.0 o1 o1 -05 3.8 o1 o1 -05 3.8	6 3.32 0 -1.78 2 3.76 7 -3.38 8 -2.02 1 4.30 0 2.23	05 01 −12 05 01 −11 05 01 −11 05 01 −09 05 01 −09 05 01 −07 05 01 −07	1.29 -0.98 1.94 -1.89 1.54 0.81 2.45 2.27 1.1 ⁴ -0.89 1.16 -0.49 1.70 2.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,24 -1 7,54 7 10,21 11 10,26 -11 11,66 -13 1,39 -1 4,10 -4	.45 0 .68 0 .02 0 .57 0 .74 0	03 -08 03 -07 03 -06 03 -05 03 -05 03 -05 03 -03 03 -03	3.00 5.20 0.91 4.47 2.99 1.55 1.20	3.14 -3.25 -0.40 5.13 -2.51 1.71 -0.84
o1 oo -10 o1 oo -00 o1 oo -06 o1 oo -04 o1 oo -02 o1 oo -02 o1 oo oo	3.45 -3.45 5.28 5.60 17.79 18.35 33.51 -34.50 20.58 20.59 7.01 7.40 90.85 -92.19	of of -03 6.1 of of -02 0.4 of of -01 3.3 of of o0 38.8 of of o1 30.1 of o1 02 2.8 of o1 03 9.6	6 6.43 8 0.52 5 5.33 6 -34.23 1 28.09 1 -3.38 0 10.99	of o1 -o5 of o1 -o3 of o1 -o3 of o1 -o2 of o1 -o1 of o1 o0 of o1 o1	1.17 0.75 5.93 5.80 7.12 5.75 1.17 1.16 1.17 -0.57 1.85 -2.70 1.99 2.46	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.08 c 1.13 c 1.13 c 1.66 1 2.04 2	.91 0 .94 0 .38 0 .83 0	03 -01 03 00 03 01 03 02 03 02 03 03 03 03 03 04	8.51 0.70 6.52 1.94 0.93	-10.48 -9.43 0.82 -6.42 -1.83 1.48
01 00 04 01 00 05 01 00 08 01 00 10 02 00 -10	1.29 1.43 8.53 7.95 6.73 -6.34 1.00 0.75 2.91 -2.95 1.3	of of o4 16.9 of o1 05 1.9 of o1 06 1.0 of o1 07 1.9 of o1 08 2.2	9 17.18 3 2.09 3 -0.04 5 3.01 3 -2.08	06 01 02 06 01 03 07 01 -11 07 01 -10 07 01 -09 07 01 -09	1.44 -2.00 3.33 2.94 1.53 1.47 2.63 1.56 3.45 2.88	04 02 -09 04 02 -08 04 02 -07 04 02 -05 04 02 -05 04 02 -04 04 02 -03	1.13 -6 8.01 -8 21.19 -20 5.31 6 1.30 -1 4.16 4	578 0 578 0 544 0 554 0 554 0 594 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.45 5.43 4.27 1.11 4.97 4.15 1.36	-7.51 -5.74 -5.38 -0.77 -5.87 -1.86
02 00 -06 02 00 -04 02 00 -02 02 00 00 02 00 02 02 00 04	10.73 -10.30 41.74 -41.63 33.58 34.14 13.06 -13.27 12.60 -12.46 36.27 32.40 36.27 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.14 3 1.73 4 1.37 6 1.14 9 -5.52 2.88	07 01 -07 07 01 -07 07 01 -06 07 01 -05 07 01 -03 07 01 -03 07 01 -01	2.59 -2.12 1.08 0.79 1.09 0.75 1.10 -1.21 1.10 -0.67 4.32 -3.58	04 02 -02 04 02 -01 04 02 00 04 02 01 04 02 02 04 02 03 04 02 04	0.95 4.99 5.24 2.98 3.74 1.62 1.2	94 0 42 0 47 0 36 0 96 23	03 00 03 01 03 02 03 03 03 03 03 04 03 -07	1.69 5.46 4.02 0.95 4.11	-1.55 5.37 5.37 5.78 4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.62 -2.53 1.90 1.91 1.95 1.93 1.16 1.43 7.16 7.49	02 01 -06 8.4 02 01 -05 9.9 02 01 -04 0.9 02 01 -03 8.9 02 01 -02 0.6 02 01 -01 1.4 02 01 00 1.7	$\begin{array}{c} 2 & -8.56 \\ 2 & 10.91 \\ 7 & -0.82 \\ 2 & -7.87 \\ 1 & 0.48 \\ 9 & -1.12 \\ 3 & -2.03 \end{array}$	07 01 00 07 01 01 07 01 02 07 01 02 07 01 03 08 01 -09	0.99 -0.84 0.90 0.02 1.02 1.32 1.35 -1.20 1.36 -1.59 1.86 -1.59	04 02 05 04 02 06 05 02 -11 05 02 -09 05 02 -08	1.60 -1 1.03 -0 3.79 2 3.47 1 2.37 -1 3.25 -1	143 0.07 0 1.25 0 0 0 0 0 0 0 0 0 0 0 0 0		4.27 8.74 6.19 3.21 1.33 3.06	-3.10 8.07 6.84 -3.19 1.36 3.54
03 00 -04 03 00 -04 03 00 -02 03 00 02 03 00 02 03 00 05	18.93 15.27 43.40 40.65 19.22 -20.22 4.04 4.29 3.94 4.55 12.65 -11.29	02 01 01 0.5 02 01 02 14.8 02 01 03 14.8 02 01 03 14.8 02 01 04 2.8 02 01 04 2.8 02 01 05 3.5 02 01 05 6.4	$\begin{array}{r} 8 & 1.00\\ 8 & 15.84\\ 7 & -14.26\\ 3 & 3.46\\ 8 & -3.91\\ 0 & -7.22\\ 0 & -2.00\end{array}$	00 01 -07 08 01 -07 08 01 -06 08 01 -05 08 01 -04 08 01 -03	3.40 -2.63 1.56 0.74 1.77 1.20 0.81 -0.40 0.79 -0.62	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.14 1.13 8.72 16.00 1.14 1.13 1.14 1.14 1.15 1.14 1.15	5.57 0 5.45 5.41 0 5.86 0 5.23 0 2.77 4.56 0	- 03 01 5 03 -04 5 03 -03 5 03 -02	1.41 3.77 7.13 4.13	1.55 3.49 -6.63 -4.78
03 00 08 04 00 -12 04 00 -10 04 00 -08 04 00 -05 04 00 -04	2.31 -2.42 4.18 -4.10 1.98 -2.26 1.15 -0.30 10.66 -10.46 11.31 11.64	o3 o1 -11 2.2 o3 o1 -10 3.5 o3 o1 -09 4.0 o3 o1 -08 1.4 o3 o1 -07 1.0 o3 o1 -06 7.5	5 -2.45 6 -3.83 3 -4.57 8 -1.86 5 -0.96 4 8.43	00 02 02 00 02 03 00 02 03 00 02 04 00 02 05 00 02 06 00 02 07	7.87 - 7.33 4.00 5.18 7.65 7.35 2.61 2.88 10.10 11.39 4.52 -5.23	05 02 00 05 02 01 05 02 02 05 02 03 05 02 04 06 02 -10	1.12 -0 2.26 2.16 1.12 -1 1.05 -0 4.16	.19 of 2.30 of .11 of .68 of .51 of	04 02 0 04 03 0 04 04 0 04 05 0 04 05 0 04 07	3.00 3.38 0.59 3.45 0.58 3.66	3.09 -4.30 0.80 3.95 -0.26 -3.60
04 00 -02 04 00 02 04 00 02 04 00 04 04 00 06 04 00 08	8.11 -9.05 17.03 -18.54 6.70 6.50 1.16 -1.28 1.10 -0.89 3.48 3.74	o3 o1 -o5 5.5 o3 o1 -o4 12.7 o3 o1 -o3 16.2 o3 o1 -o2 1.3 o3 o1 -o1 7.7 o3 o1 o0 0.8 o3 o1 o1 0.8	4 -5.98 1 12.01 6 -17.21 3 1.65 4 8.03 0 -1.52 5 -0.82	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.12 0.75 1.04 0.53 2.28 -2.57 1.09 0.76 1.14 -1.11 1.12 -0.80	05 02 -09 06 02 -08 06 02 -07 06 02 -07 06 02 -05 06 02 -04 06 02 -04	3.90 -3 3.03 -3 1.10 1 2.94 3 1.13 0 5.64 -9	-53 o .06 o .16 o .02 o .06 o .02 o .06 o	1 04 -07 1 04 -05 1 04 -05 1 04 -03 1 04 -03 1 04 -02	0.68 1.85 7.37 0.57 4.90 0.5%	-1.13 2.34 -7.02 0.10 5.25 0.83 -3.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1.91 & -1.57 \\ 6.49 & 6.49 \\ 1.54 & 1.97 \\ 1.50 & -0.82 \\ 7.87 & 7.82 \\ 6.53 & -6.99 \\ 4.05 & 4.09 \end{array}$	o3 o1 o2 1.3 o3 o1 o3 1.0 o3 o1 o4 5.3 o3 o1 o5 5.4 o3 o1 o6 1.1 o3 o1 o6 1.1 o3 o1 o8 3.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.60 3.06 5.22 6.69 11.60 -11.73 22.52 -22.95 1.28 -0.66 10.57 -9.76	06 02 -02 06 02 -01 06 02 00 06 02 01 06 02 02	9.31 -9 1.48 1 3.04 -3 2.95 2 1.01 -0 3.82 -3	.63 .71 .60 .60 .60 .64	1 04 00 1 04 01 1 04 02 1 04 03 1 04 04 1 04 05	3.80 14.27 8.03 8.25 2.42 2.93	-3.85 -11.68 -7.49 7.7% -2.33 3.80
05 00 02 05 00 04 05 00 -12 06 00 -10 06 00 -08 06 00 -06	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	04 01 -12 1.3 04 01 -11 1.0 04 01 -10 1.1 04 01 -09 2.4 04 01 -08 6.1 04 01 -07 8.6	$ \begin{array}{r} 8 & -0.71 \\ 5 & 1.08 \\ 5 & 1.33 \\ 5 & 2.41 \\ 2 & 6.22 \\ 1 & 8.75 \\ \end{array} $	01 02 -01 01 02 00 01 02 01 01 02 02 01 02 03 01 02 04 01 02 05	4.27 0.17 9.92 9.48 11.39 -10.59 11.82 -10.37 3.72 4.08 2.31 2.55 2.49 -2.48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.26 2.16 1.01 -0 2.14 -1 1.02 -0 1.00 0	-93 -71 -26 -95 -0,16 -0,05 -0,16 -0,05 -0,16 -0,05 -0,05	2 04 -07 2 04 -06 2 04 -05 2 04 -05 2 04 -05 2 04 -03	2.71 1.54 0.64 2.72 5.06	-3.22 -2.21 -3.40 9.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.17 -0.05 3.21 -3.29 1.54 1.53 2.71 -2.65 2.92 -3.04 3.39 -2.63	04 01 -06 1.8 04 01 -05 1.0 04 01 -05 1.0 04 01 -03 5.c 04 01 -03 5.c 04 01 -02 7.2 04 01 -01 11.3 04 01 00 0.0	3 1.91 0 0.05 3 -8.02 5 5.80 3 -8.04 7 12.37 8 -1.10	o1 02 06 01 02 07 01 02 08 01 02 09 02 02 -11 02 02 -10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	or 03 of	2.13		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.51 4.088 1.885 3.45 8.45 5.15	-4.33 -1.80 2.50 3.49 7.77 4.54
07 00 -06 07 00 -04 07 00 -02 07 00 -02 07 00 02	4.19 4.23 3.60 2.39 1.07 0.70 0.96 0.51 0.65 -0.05	04 01 01 4.0 04 01 02 1.0 04 01 03 1.1 04 01 03 1.1 04 01 05 1.1 04 01 05 1.1	4 -4.70 8 0.52 3 1.00 7 -0.75 7 0.49 1 2.13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.93 5.16 1.11 -0.30 1.04 2.27 0.95 1.25 5.67 -6.08 9.91 -10.99 18.72 17.15	00 03 0? 00 03 03 00 03 04 00 03 05 00 03 05	5.97 0.63 6.48 10.06 - 0.93	6.72 6.72 6.56 9.07 0.94 0	2 04 05 3 04 -07 3 04 -06 3 04 -05 3 04 -05 3 04 -03	3.46 2.35 1.71 2.85 2.56 0.62	-3.69 -2.13 -1.44 3.69 5.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.25 & -1.63 \\ 2.06 & -1.54 \\ 33.33 & -29.28 \\ 39.03 & -35.64 \\ 3.95 & -4.90 \\ \end{array}$	04 01 07 2.4 05 01 -11 1.6 05 01 -09 1.1 05 01 -09 1.1 05 01 -08 2.2 05 01 -07 1.6	8 -1.57 9 0.93 5 -0.49 4 -2.38 4 -1.43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.07 25.04 3.57 2.93 6.55 6.77 7.61 -7.90 3.89 -4.64 3.76 3.88	01 03 -07 01 03 -06 01 03 -05 01 03 -05 01 03 -04 01 03 -03 01 03 -01	1.59 - 0.91 0.82 - 0.72 13.27 1 11.88 1 0.63 -	2.29 0.07 0.73 1.25 2.39 1.73 0 1.70	3 04 -02 3 04 -01 3 04 01 3 04 01 3 04 02 3 04 03	2.92 7.11 0.63 1.54 1.54 0.99 2.55	3.24 -7.72 -0.00 2.14 1.73 -1.48 -2.23
00 01 05 00 01 05 00 01 06 00 01 07 00 01 08 00 01 09 00 01 10	0.73 $0.504.63$ $-5.221.99$ $2.781.07$ $-1.031.15$ $-1.561.17$ $0.471.12$ 1.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 -7.39 2 -9.64 8 -1:52 9 1.13 1 -52 2 -3.73	02 02 05 02 02 05 02 02 05 02 02 07 02 02 08 03 02 -10	1.05 -0.36 1.12 0.04 1.14 0.80 2.49 2.87 1.10 0.91	01 03 00 01 03 01 01 03 02 01 03 03 01 03 05 01 03 05	8.95 1.38 0.39 1.90 2.38 - 0.92 3.22 -	9.39 1.20 1.52 2.56 2.74 1.55 0 1.55 0 0 0 0 0 0 0 0 0 0 0 0 0	5 04 -06 4 04 -05 4 04 -05 4 04 -04 5 04 -03 5 04 -03	0.68 2.26 2.35 2.69 3.56	-0.60 2.31 1.97 -3.25 -3.76
oo of 11 oo of 12	0.95 1.05 1.38 1.78	05 01 01 5. 05 01 02 1.1 05 01 03 1.1	7 0.51 7 1.21	o3 o2 - o9 o3 o2 - o8 o3 o2 - o7 o3 o2 - o7 o3 o2 - o6 o3 o2 - o5	5.40 5.23 18.19 16.00 4.64 -7.25 1.00 0.27 2.77 -3.91			a a a	4 04 -01 4 04 00 4 04 01 5 05 02	2.58 4.73 0.58	-2.29 4.18 -0.44

rangement moléculaire du *p*-aminobenzamide (Alléaume & Decap, 1966).

Les distances interatomiques les plus courtes entre 2 feuillets successifs sont celles de N à C'(1) et de H'(11) à C(3) (3,65 et 2,99 Å).

Références

Alléaume, M. & Decap, J. (1966). À paraître. Ayerst, E. M. & Duke, J. R. C. (1954). Acta Cryst. 7, 588. BOUZON, C., HAUW, C., GAULTIER, J. & CLASTRE, J. (1965). Bull. Soc. Fr. Minér. Crist. 88, 139.

BROADLEY, J. S., CRUICKSHANK, D. W. J., MORRISON, J. D., ROBERTSON J. M. & SHEARER, H. M. M. (1959). *Proc. Roy. Soc. A*, **251**, 441.

- DAVIES, D. R. & PASTERNAK, R. A. (1956). Acta Cryst. 9, 334.
- HOSPITAL, M. & HOUSTY, J. (1966). Acta Cryst. 20, 368.
- HOUSTY, J. & HOSPITAL, M. (1965a). Acta Cryst. 18, 693.
- HOUSTY, J. & HOSPITAL, M. (1965b). Acta Cryst. 18, 753.

.

HOUSTY, J. & HOSPITAL, M. (1966). Acta Cryst. 20, 325.